Tetrahedron Letters 49 (2008) 4470-4472

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet



# Chelation control in the [3+3] annulation reaction of alkoxy-substituted 1,1-diacylcyclopropanes with 1,3-bis(trimethylsilyloxy)-1,3-butadienes

Jennifer Hefner<sup>a</sup>, Peter Langer<sup>a,b,\*</sup>

<sup>a</sup> Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany <sup>b</sup> Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany

#### ARTICLE INFO

#### ABSTRACT

Article history: Received 22 March 2008 Revised 8 May 2008 Accepted 13 May 2008 Available online 16 May 2008

Keywords: Arenes Cyclopropanes Cyclizations Regioselectivity Silvl enol ethers

Highly substituted phenols are pharmacologically important molecules which occur in various natural products.<sup>1</sup> Recently, we have reported<sup>2</sup> the synthesis of functionalized phenols by TiCl<sub>4</sub>mediated [3+3] cyclization<sup>3</sup> of 1,3-bis(trimethylsilyloxy)-1,3-butadienes<sup>4</sup> with 1,1-diacylcyclopropanes. Although symmetrical cyclopropanes were employed in most cases, some unsymmetrical substrates have also been studied. The cyclization of 1,3-bis(silyloxy)-1,3-butadienes with 1-acetyl-1-formylcyclopropane and with 1-acetyl-1-benzoylcyclopropane proceeded by regioselective attack of the terminal carbon atom of the diene onto the more reactive carbonyl group (i.e., the formyl and the acetyl group, respectively). We were intrigued by the possibility of incorporating chelating<sup>5,6</sup> alkoxy substituents into the diacylcyclopropane, which could direct the regioselectivity of the cyclization. Herein, we report preliminary results of this study. Noteworthy, the annulation reactions reported provide a convenient and regioselective approach to a variety of sterically encumbered and highly functionalized phenols, which are not readily available by other methods.

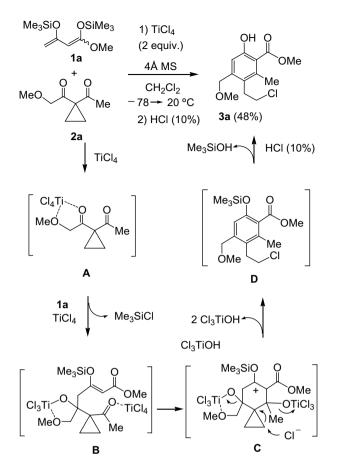
The cyclopropanation of 1-methoxypentane-2,4-dione<sup>7</sup> afforded the novel cyclopropane **2a** in 40% yield.<sup>8</sup> The TiCl<sub>4</sub>-mediated cyclization of **2a** with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **1a**, readily available in two steps from methyl acetoacetate,<sup>9</sup> afforded the 5-chloroethyl-4-(methoxymethyl)salicylate **3a** (Scheme 1).<sup>10</sup>

The regioselective formation of **3a** can be explained by chelation of  $TiCl_4$  by the methoxy and the neighboring carbonyl group

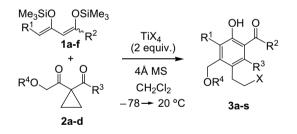
Functionalized arenes were prepared by chelation-controlled '[3+3] cyclization/homo-Michael' reactions of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with benzyloxy- or methoxy-substituted 1,1-diacylcyclo-propanes.

© 2008 Elsevier Ltd. All rights reserved.

(intermediate A). The TiCl<sub>4</sub>-mediated attack of the terminal carbon atom of **1a** onto **2a** gives rise to the formation of intermediate **B**, which undergoes a cyclization via the central carbon atom of the 1,3-dicarbonyl unit (intermediate C). The product is subsequently formed by Lewis acid-assisted cleavage of the spirocyclopropane moiety and aromatization by attack of a chloride ion onto the cyclopropane (intermediate **D**) and hydrolysis upon aqueous work-up. The process can be regarded as a domino '[3+3] cyclization/homo-Michael' reaction.<sup>11</sup> The regioselectivity can be explained by the Lewis acid-directing effect of the methoxy group of the substrate. During the optimization of the reaction, the following parameters proved to be important. The best yields of 3a were obtained when 1.0 equiv of 2a, 1.5 equiv of 1a and 2.0 equiv of TiCl<sub>4</sub> were employed. The low concentration (c(2a) = 0.01 M) and the presence of molecular sieves (4 Å) (for the removal of water) also played an important role.


The novel methoxy- and benzyloxy-substituted 1,1-diacylcyclopropanes **2b**, **2c**, and **2d** were prepared by cyclopropanation of 1-benzyloxypentane-2,4-dione,<sup>12</sup> 4-methoxy-1-phenylbutane-1,3dione, and 4-methoxy-1-phenylbutane-1,3-dione in 42%, 40%, and 44% yield, respectively. The cyclization of **2a–d** with 1,3bis(trimethylsilyloxy)-1,3-butadienes **1a–f**, in the presence of TiCl<sub>4</sub> or TiBr<sub>4</sub>, afforded the functionalized phenols **3a–s** (Scheme 2, Table 1). All products were formed with very good regioselectivity by attack of the terminal carbon atom of the diene onto the carbonyl group located next to the alkoxy group. The structure of the products was confirmed by spectroscopic methods (2D NMR).

The substituted arenes prepared represent useful synthetic building blocks. For example, salicylate **3g** was transformed into

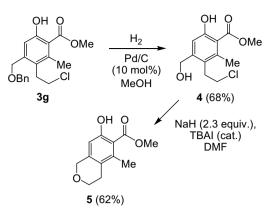



<sup>\*</sup> Corresponding author. Tel.: +49 381 4986410; fax: +49 381 4986412. *E-mail address:* peter.langer@uni-rostock.de (P. Langer).

<sup>0040-4039/\$ -</sup> see front matter  $\odot$  2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.05.066



Scheme 1. Possible mechanism of the formation of 3a.




Scheme 2. Synthesis of 3a-s.

Table 1 Products and yields

| 1 | 2 | 3 | $\mathbb{R}^1$ | R <sup>2</sup> | R <sup>3</sup> | $\mathbb{R}^4$ | Х  | Yield <sup>a</sup> (%) |
|---|---|---|----------------|----------------|----------------|----------------|----|------------------------|
| a | а | a | Н              | OMe            | Me             | Me             | Cl | 44                     |
| b | а | b | Н              | OEt            | Me             | Me             | Cl | 38                     |
| с | а | с | Me             | OMe            | Me             | Me             | Cl | 30                     |
| d | а | d | Me             | Et             | Me             | Me             | Cl | 30                     |
| a | а | f | Н              | OMe            | Me             | Me             | Br | 46                     |
| a | b | g | Н              | OMe            | Me             | Bn             | Cl | 40                     |
| с | b | h | Me             | OMe            | Me             | Bn             | Cl | 44                     |
| e | b | i | Et             | OMe            | Me             | Bn             | Cl | 41                     |
| a | b | j | Н              | OMe            | Me             | Bn             | Br | 79                     |
| a | с | k | Н              | OMe            | Ph             | Me             | Cl | 63                     |
| с | с | 1 | Me             | OMe            | Ph             | Me             | Cl | 48                     |
| f | с | m | Н              | Me             | Ph             | Me             | Cl | 33                     |
| d | с | n | Me             | Et             | Ph             | Me             | Cl | 36                     |
| a | с | 0 | Н              | OMe            | Ph             | Me             | Br | 49                     |
| a | d | р | Н              | OMe            | Ph             | Bn             | Cl | 40                     |
| e | d | q | Et             | OMe            | Ph             | Bn             | Cl | 64                     |
| d | d | r | Me             | Et             | Ph             | Bn             | Cl | 33                     |
| a | d | S | Н              | OMe            | Ph             | Bn             | Br | 52                     |

<sup>a</sup> Yields of isolated products.



Scheme 3. Synthesis of tetrahydrobenzopyran 5.

tetrahydrobenzopyran **5** by debenzylation and subsequent Williamson reaction (Scheme 3). A number of related products were successfully prepared.

In conclusion, we have reported the first substrate-directed domino '[3+3] cyclization/homo-Michael' reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 1,1-diacylcyclopropanes. These reactions provide a convenient approach to highly functionalized phenols, which are not readily available by other methods. The regioselectivity can be explained by the Lewis acid-directing effect of the alkoxy groups of the substrates. We believe that the strategy outlined herein can be applied also to other annulation reactions of 1,3-bis(silyl enol ethers).

## Acknowledgment

Financial support by the State of Mecklenburg-Vorpommern is gratefully acknowledged.

### **References and notes**

- 1. Römpp Lexikon Naturstoffe; Steglich, W., Fugmann, B., Lang-Fugmann, S., Eds.; Thieme: Stuttgart, 1997.
- (a) Langer, P.; Bose, G. Angew. Chem., Int. Ed. 2003, 42, 4033; (b) Bose, G.; Nguyen, V. T. H.; Ullah, E.; Lahiri, S.; Görls, H.; Langer, P. J. Org. Chem. 2004, 69, 9128.
- 3. For a review of [3+3] cyclizations, see: Feist, H.; Langer, P. Synthesis 2007, 327.
- 4. For a review of 1,3-bis(silyl enol ethers), see: Langer, P. Synthesis 2002, 441.
- For reviews of chelation control in Lewis acid-mediated reactions, see: (a) Yamamoto, H. Lewis Acid Chemistry; Oxford University Press: Oxford, 1999; (b) Mahrwald, R. Chem. Rev. 1999, 99, 1095; (c) Santelli, M.; Pons, J. M. Lewis Acids and Selectivity in Organic Synthesis; CRC Press: Boca Raton, 1996; (d) Shambayati, S.; Schreiber, S. L. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 1, pp 283–324.
- Chelation control has been reported for the [4+3] annulation reaction of benzyloxy-substituted 1,4-dicarbonyl compounds with bis(silyl enol ethers): Molander, G. A.; Eastwood, P. R. J. Org. Chem. **1996**, 61, 1910.
- 7. Bruce, W. F.; Coover, H. W. J. Am. Chem. Soc. 1944, 66, 2092.
- 8. Typical procedure for the synthesis of diacylcyclopropanes 2a-d: To a DMSO solution (100 mL) of methoxyacetylacetone (5.00 g, 38.5 mmol) and potassium carbonate (15.90 g, 115.5 mmol) was added 1,2-dibromeethane (9.40 g, 50.0 mmol) dropwise. The mixture was stirred at 20 °C for 24 h. The mixture was poured into water (400 mL), and the mixture was extracted with diethyl ether (3 × 100 mL). The combined organic layers were washed with water and with brine, dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated in vacuo. Vacuum destillation (bp = 46 °C, 0.15 mbar) afforded 2a (2.41 g, 40%) as a yellowish oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ = 1.44 (m, 2H, CH<sub>2</sub>), 1.51 (m, 2H, CH<sub>2</sub>), 2.10 (s, 3H, CH<sub>3</sub>), 3.38 (s, 3H, OCH<sub>3</sub>), 4.31 (s, 2H, CH<sub>2</sub>), <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): δ = 17.4 (CH<sub>2</sub>), 26.3 (CH<sub>3</sub>), 41.0 (C), 59.1 (OCH<sub>3</sub>), 77.1 (CH<sub>2</sub>OCH<sub>3</sub>), 202.9, 203.6 (CO).
- (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. **1980**, 102, 3534; (b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. **1983**, 61, 688.
- 10. Typical procedure for the synthesis of phenols 3a-s. To a CH<sub>2</sub>Cl<sub>2</sub> solution (100 mL) of 2a (156 mg, 1.0 mmol) and 1a (391 mg, 1.5 mmol) in the presence of molecular sieves (4 Å, 1.00 g) was added TiCl<sub>4</sub> (0.22 mL, 2.0 mmol) dropwise at -78 °C under an argon atmosphere. The solution was allowed to warm to 20 °C over 18 h with stirring and subsequently filtered. The filtrate was poured into hydrochloric acid (10%, 100 mL) and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>

(3 × 100 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, heptanes/EtOAc = 10:1→7:1) to give **3a** as a slightly yellow solid (120 mg, 44%), mp = 77–78 °C. *R*<sub>f</sub> = 0.38 (heptanes/EtOAc = 3:1). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 2.50 (s, 3H, CH<sub>3</sub>), 3.09 (m, 2H, CH<sub>2</sub>), 3.42 (s, 3H, OCH<sub>3</sub>), 3.54 (m, 2H, CH<sub>2</sub>Cl), 3.97 (s, 3H, OCH<sub>3</sub>), 4.43 (s, 2H, CH<sub>2</sub>OCH<sub>3</sub>), 6.90 (s, 1H, Ar), 10.61 (s, 1H, OH). <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  = 14.5 (CH<sub>3</sub>), 32.9, 43.3 (CH<sub>2</sub>), 52.7, 59.9 (OCH<sub>3</sub>), 73.8 (CH<sub>2</sub>OCH<sub>3</sub>), 113.9 (CA<sub>r</sub>), 116.8 (CH<sub>Ar</sub>), 127.3, 140.0, 143.8 (CA<sub>r</sub>), 160.7 (CA<sub>r</sub>OH), 172.0 (COOH<sub>3</sub>). IR (KBm <sup>-1</sup>): 3025 (m), 2966 (w), 2929 (w), 2892 (w), 1660 (s). MS (EI, 70 eV): *m/z* (%) = 274 (M<sup>+</sup>, <sup>37</sup>Cl, 16), 272 (M<sup>+</sup>, <sup>35</sup>Cl), 40, 240 (100), 133 (96). HRMS (EI): Calcd for C<sub>13</sub>H<sub>17</sub>ClO<sub>4</sub> ([M]<sup>+</sup>, <sup>35</sup>Cl): 272.08099, found 272.08061. Anal. Calcd for

 $C_{13}H_{17}CIO_4$  (272.72): C, 57.25; H, 6.28. Found: C, 57.24; H, 6.39. All new products gave correct spectroscopic data and elemental analyses and/or high resolution mass data.

- 11. Reactions of acceptor-substituted cyclopropanes have been classified by Danishefsky in terms of 'strictly nucleophilic ring openings', 'electrophilically assisted ring openings', and 'spiro-activations': Danishefsky, S. J. Acc. Chem. Res. **1979**, 66. In the domino '[3+3]-cyclization-homo-Michael' reaction reported herein two effects are operating: (a) a 'dynamic spiro-activation' and (b) activation by an electrophile. For a dynamic spiro activation, see: Zefirov, N. S.; Kozhushkov, S. I.; Kuznetsova, T. S. *Tetrahedron* **1982**, *38*, 1693.
- 12. Wenner, W.; Plati, J. T. J. Org. Chem. 1946, 11, 751.